Baojin Ding, PhD
Associate Professor with Tenure of Biochemistry and Molecular Biology
Bachelor of Science - 2001 (Medicine, MD equivalent), Medical College of Qingdao University, China
Master of Science - 2004 (Clinical Laboratory), Wenzhou Medical University, China
PhD - 2010 (Biochemistry and Molecular Biology), Louisiana State University, Baton Rouge, LA
Postdoctoral - 2016 (Neurobiology), University of Massachusetts Chan Medical School, Worcester, MA
News
DING LAB NEWS
August 22, 2024
Congratulations to Dr. Masood Sepehrimanesh on accepting a Tenure-Track Assistant Professor position in Biology at the School of Biological Sciences, Louisiana Tech University! Masood joined the Ding Laboratory as a Postdoctoral Fellow in the spring of 2020. Over the past four and a half years, he has received extensive training in Cell Biology, Molecular Biology, Biochemistry, and Neuroscience. His productive work has resulted in six published papers, with three more manuscripts in preparation. Congratulations again, Masood! Best of luck in your future academic career.
July 16, 2024
Congratulations on the Book published: Human Induced Pluripotent Stem Cells. Neuromethods series, Volume. 210. https://doi.org/10.1007/978-1-0716-3999-3
Editors: Baojin Ding and Yu Tang
Publisher: Springer Nature, Humana New York, NY eBook
ISBN: 978-1-0716-3999-3 Print ISBN: 978-1-0716-3998-6
Highlights:
• Includes cutting-edge methods and protocols
• Provides step-by-step detail essential for reproducible results
• Contains key notes and implementation advice from the experts
Human Induced Pluripotent Stem Cells | SpringerLink
May 29, 2024
Congratulations to Luke Cui for his application “Determining the molecular mechanisms of impaired nucleocytoplasmic transport in DYT1 dystonia” has been selected as an awardee for Ike Muslow Predoctoral Fellowship.
He has been awarded $32,000 for the Spring 2024 Intramural Grant Program. The funding period is July 1, 2024 - June 30, 2025.
May 23, 2024
Congratulations to Dr. Baojin Ding on the promotion to Associate Professor with Tenure in the Department of Biochemistry and Molecular Biology at LSU Health Shreveport, effective July 1, 2024.
March 14, 2024
Congratulations to Haochen (Luke) Cui, a doctoral student in the Ding Lab, for passing his preliminary examination. The title of his proposal is “Determining the Molecular Mechanisms of Impaired Nucleocytoplasmic Transport in DYT1 Dystonia.”
It is a great honor to have Dr. Mary Munson, a Professor in Biochemistry and Molecular Biotechnology at UMass Chan Medical School and the elected President (2023-2025) of the American Society for Cell Biology (ASCB), serve as the outside member on Luke’s Advisory Committee.
March 4, 2024
Paper Accepted in The Journal of Neuroscience.
Akter M, Cui H, Hosain MA, Liu J, Duan Y, and Ding B. (2024). RANBP17 overexpression restores nucleocytoplasmic transport and ameliorates neurodevelopment in induced DYT1 dystonia motor neurons. J Neuroscience. 2024 Mar 4:e1728232024. doi: 10.1523/JNEUROSCI.1728-23.2024.
Graduate students Masuma Akter, Haochen Cui and MD Abir Hosain are co-first authors. In this study, we generated DYT1 patient-specific neurons from induced pluripotent stem cells (iPSCs) and examined genome-wide changes in gene expression. We have identified that RANBP17, a nuclear transport regulator, plays a substantial mitigating role, effectively rescuing cellular deficits observed in DYT1 neurons. These findings shed light on the intricate molecular underpinnings in DYT1 dystonia and have the potential to lead to the development of innovative treatment strategies.
January 15, 2024
Congratulations to Dr. Masuma Akter, a trainee from the Ding Lab, for securing a position at Johnson & Johnson, a leading healthcare company. She is working as a Scientist for the development of Stem Cell-based cell therapy.
Previous News
2023
October 13, 2023
The application “Modeling DYT1 Dystonia in Patient-derived Neurons” has been selected as an awardee for the Chancellor's Pathways Research Award 2024 with the total funding of $80,000 from LSU Health Shreveport.
August 30, 2023
Congratulations to the Ding Lab for being awarded a $365,000 R56 grant from the NIH National Institute of Neurological Disorders and Stroke (NINDS) for the project, "Modeling DYT1 Dystonia in Patient-derived Neurons."
July 21, 2023
Three members from the Ding lab presented their research on Graduate Research Day.
- Abir Hosain, graduate student, gave a poster presentation entitled “Determining the pathogenesis of the movement disorder ALS4 using reprogrammed human motor neurons”.
- Luke Cui, graduate student, his presentation “Proteomic study and AlphaFold2 prediction revealed DYT1 dystonia-causing mutation Tor1A-ΔE disrupts nucleocytoplasmic transport through trapping the major transport receptor exportin 1 (Xpo1) in patient-derived neurons” won the First Place of Poster Presentation in the junior category!
- Dr. Masood Sepehrimanesh, postdoctoral fellow, was selected to give the oral presentation as the only representative in the postdoctoral category! The title of his presentation is Generation of patient-specific motor neurons in modeling movement disorder amyotrophic lateral sclerosis.
Congratulations on the achievements you guys made.
May 3, 2023
Congratulations to Ms. Masuma Akter, a doctoral candidate in the Ding Lab, for securing an internship position at Johnson & Johnson, a leading healthcare company.
Masuma is a 4th-year graduate student in the Ding Lab, and her research project focuses on reprogramming human neurons from adult fibroblast cells and human induced pluripotent stem cells (hiPSCs). Her productive work and the advanced techniques she learned in the Ding Lab have made her stand out. Masuma will start her internship position in the fall, and meanwhile, she will prepare for her graduation this winter.
April 27, 2023
Dr. Ding delivered a presentation titled " Patient-specific neurons are key to new discoveries in neurological diseases " as an invited speaker at The Global Experts Meet on Neurology, Neuroscience, and Brain Disorders conference, held from April 27 to 29, 2023, in Paris, France.
January 11, 2023
Congratulations to Mr. Md Abir Hosain, a graduate student in the Ding Lab, for successfully passing the qualifying exam. Well done, Abir!
2022
November 27, 2022
A paper from the Ding Lab has been published in the journal Cells. This comprehensive review paper was invited, and it discusses the recent advancements in understanding the regulatory mechanisms of motor neuron (MN) differentiation, as well as their applications in generating MNs from human induced pluripotent stem cells (hiPSCs). The paper focuses on two approaches for generating hiPSC-derived MNs: induction using small molecules and induction through lentiviral delivery of transcription factors.
November 3, 2022
Paper from the Ding Lab published in the journal STAR Protocols. Nucleocytoplasmic transport (NCT) plays critical roles in maintaining cellular homeostasis. Here, we present a protocol to measure NCT for both transcript and protein cargos in cultured cells. We first describe the fluorescent in situ hybridization (FISH) assay to measure the nuclear mRNA export. We then detail a dual reporter system to measure the protein NCT. This protocol also includes image analysis and data output using CellProfiler. The combined approach can be used to unbiasedly analyze NCT activities in cultured cells.
Cui H, Sepehrimanesh M, Coutee C, Akter M, Hosain A and Ding B*. (2022). Protocol to image and quantify nucleocytoplasmic transport in cultured cells using fluorescent in situ hybridization and a dual reporter system. STAR Protoc. 2022 Dec 16; 3(4):101813. https://doi.org/10.1016/j.xpro.2022.101813
July 1, 2022
Congratulations on the Ding Lab receiving Grant-in-Aid Award from the Center for Brain Health (CBH) at LSU Health Shreveport. This is an intramural grant ($25,000; 07/01/2022-06/30/2023). The major goal of this project is to determine the pathogenesis of DYT1 dystonia via biochemical approaches using iPSC-derived neurons.
May 6, 2022
Paper from the Ding Lab published in the journal Stem Cell Research. This is a Lab Resource paper. In this study, the disease-causing mutation in a dystonia patient iPSC line was genomically corrected and generated isogenic iPSC control lines, providing valuable research recourses in dystonia research.
Akter M, Cui H, Chen YH and Ding B*. (2022). Generation of gene-corrected isogenic control cell lines from a DYT1 dystonia patient iPSC line carrying a heterozygous GAG mutation in TOR1A gene. Stem Cell Research. 62. 102807
May 2, 2022
Congratulations on Dr. Masood Sepehrimanesh joining the Ding Lab as a Postdoctoral Fellow. Welcome Masood!
March 18, 2022
Paper from the Ding Lab published in the journal STAR Protocols (Cell Press). This paper is an invited protocol for the generation of patient-specific motor neurons from hiPSCs.
Akter M, Cui H, Sepehrimanesh M., Hosain A. and Ding B*. (2022). Generation of highly pure motor neurons from human induced pluripotent stem cells. STAR Protoc. 2022 Mar 10; 3(1):101223.doi: 10.1016/j.xpro.2022.101223. eCollection 2022 Mar 18
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8920922/pdf/main.pdf
January 29, 2022
Congratulations to the Ding Lab for the publication (Ding et al. Disease modeling with human neurons reveals LMNB1 dysregulation underlying DYT1 dystonia. J Neurosci. (2021) 41 (9): 2024-2038.) was selected as JNeurosci Spotlight 2021.
JNeurosci's Annual Spotlight features articles that received the highest marks for both methodological merit and significance. See the papers selected for this year’s recognition.
January 27, 2022
Research Features: Patient-specific neurons key in new dystonia discoveries
- READ MORE -
2021
March 2021
Featured in Journal of Neuroscience
"Elevated Lamin B1 in Neurons Made from Human Dystonia Cells"
Baojin Ding, Yu Tang, Shuaipeng Ma, Masuma Akter, Meng-Lu Liu, et al.
(see pages 2024–2038)
February 12, 2020
Congratulations to the Ding Lab on receiving a grant from the National Institutes of Health (NIH). This is the National Institute of Neurological Disorders and Stroke (NINDS) Exploratory Neuroscience Research Grant. The project aims to determine the pathogenesis of childhood-onset DYT1 dystonia in patient-specific neurons that are generated by direct conversion and iPSC-based reprogramming and differentiation.
November 15, 2019
Congratulations to the Ding Lab on receiving a grant from the Department of Defense (DoD) Peer-Reviewed Medical Research Program (PRMRP) Discovery Award. This project aims to determine the pathogenesis of adulthood onset dystonia via directly reprogramming human neurons from patient fibroblasts.
Research
RESEARCH
Our research focuses on cellular and molecular neuroscience and neurological diseases. Cell culture and genetically modified mice are used as model systems. Techniques in Molecular Biology, Cell Biology and Biochemistry are employed.
Our research projects can be grouped into three closely correlated directions.
- 1. The timing mechanism of gene expression in maturing neurons
- 2. Nucleocytoplasmic transport regulation
- 3. Modeling human neurological diseases
1. The timing mechanism of gene expression in maturing neurons
The timing mechanism of gene expression in maturing neurons
Central nervous system development results from the interactions between intrinsic genes and extrinsic environment. The process of neuronal development consists of successive developmental stages including proliferation, differentiation, migration, ax on extension, dendritogenesis, and formation of functional synapses. In this developmental sequence, the interplay between genes and environment ensures that each step must occur in the proper timing and sequence. Their successful regulation requires that numerous groups of genes be turned on and off in a timely manner. However, the timing mechanisms of gene expression in maturing neurons are not fully understood.
By using mouse cerebellar granule neurons (CGNs) as a research model, we have identified a novel nuclear factor one (NFI)-regulated temporal switch program linked to dendrite formation. In this program, neuronal mature genes (late expressed synaptoge nesis-related genes) are up-regulated and immature genes (early expressed amplification-related genes) are down-regulated during a period of postnatal development window. One distinguished feature of this program is the NFI temporal occupancy of target genes. We also found that NFI switch program were regulated by resting membrane potential, CaN/NFAT signaling pathway, ETV1 and BDNF etc. Most interestingly, some neurodevelopmental disorders are associated with particular NFI-regulated 'switch' genes, such as Autism Spectrum Disorders (ASD). Research efforts are focusing on identification and characterization of novel regulators and signaling pathways of NFI-regulated program, and the involvement of disrupted NFI-regulated developmental program in neurodevelopmental disorders.
2. Nucleocytoplasmic transport regulation
Nucleocytoplasmic transport regulation
In eukaryotic cells, transcription and translation processes are physically separated by nuclear envelope (NE). Thus, the proper functions of a cell involves the mRNA nuclear exporting for protein synthesis in the cytoplasm and protein nuclear transport cross the NE (Figure 2A). Defective nucleocytoplasmic transport (NCT) has merged as a common molecular underpinning of many neurological diseases, including Alzheimer disease (AD), amyotrophic lateral sclerosis (ALS) and Huntington’s disease (HD). Systematically analyze the regulation of nucleocytoplasmic transport will provide novel insights into the nuclear transport machinery and advance our understanding of how defective NCT contributes to human diseases. We use electron microscope (EM) to examine the ultrastructure of cells, including nuclear envelope and nuclear pore complex (NPC). We have established two systems to analyze nuclear transport function in cultured mammalian cells. One approach measures nuclear mRNA exporting using fluorescent in situ hybridization (FISH) with oligo-dT probes combined with immuno-staining of NE markers. Another approach analyzes protein nuclear transport using lentiviral delivery of a dual reporter (GFP-NES and RFP-NLS). Research efforts are focusing on molecular mechanisms of NCT machinery and identification of dysregulated factors that disrupt NCT in aging and diseased cells.
3. Modeling human neurological diseases
Modeling human neurological diseases
The limited access to patient neurons greatly impedes the progress of research in neurological diseases. Reprogramming of human neurons from adult fibroblasts provides an unprecedented approach to deciphering the molecular pathogenesis underlying disease condition. Using lentiviral delivery of transcription factors, we can generate human neurons from adult fibroblast via two strategies. One strategy is direct conversion of fibroblasts into neurons. The other strategy is induced pluripotent stem cells (iPSCs)-based reprogramming and differentiation. Research efforts are focusing on the molecular pathogenesis of neurological disorders, such as Alzheimer disease (AD), Dystonia and amyotrophic lateral sclerosis (ALS).
Publications
Publications (within recent 4 years)
- Akter M, Cui H, Hosain MA, Liu J, Duan Y, and Ding B*. (2024). RANBP17 overexpression restores nucleocytoplasmic transport and ameliorates neurodevelopment in induced DYT1 dystonia motor neurons. J Neuroscience. 2024 Mar 4:e1728232024. doi: 10.1523/JNEUROSCI.1728-23.2024.
- Akter M, Cui H, Hosain A., and Ding B*. (2023). Generation of two induced pluripotent stem cell lines with heterozygous and homozygous amyotrophic lateral sclerosis mutation P525L (c.1574C>T) in FUS gene. Stem Cell Research. 2023 Apl 24; 69:103103. https://doi.org/10.1016/j.scr.2023.103103
- Akter M, Cui H, Hosain A., and Ding B*. (2023). Generation of two induced pluripotent stem cell lines with heterozygous and homozygous amyotrophic lateral sclerosis mutation R521G (c.1561C>G) in FUS gene. Stem Cell Research. 2023 Mar 21; 69:103078. https://doi.org/10.1016/j.scr.2023.103078
- Akter M and Ding B*. (2022). Modeling Movement Disorders via Generation of hiPSC-Derived Motor Neurons. Cells. 2022 Nov 27;11(23):3796. https://doi.org/10.3390/cells11233796
- Cui H, Sepehrimanesh M, Coutee C, Akter M, Hosain A and Ding B*. (2022). Protocol to image and quantify nucleocytoplasmic transport in cultured cells using fluorescent in situ hybridization and a dual reporter system. STAR Protoc. 2022 Dec 16; 3(4):101813. https://doi.org/10.1016/j.xpro.2022.101813
- Akter M, Cui H, Chen Y-H and Ding B*. (2022). Generation of gene-corrected isogenic control cell lines from a DYT1 dystonia patient iPSC line carrying a heterozygous GAG mutation in TOR1A gene. Stem Cell Research. 62.July 2022, 102807. https://doi.org/10.1016/j.scr.2022.102807
- Akter M, Cui H, Sepehrimanesh M., Hosain A. and Ding B*. (2022). Generation of highly pure motor neurons from human induced pluripotent stem cells. STAR Protoc. 2022 Mar 10; 3(1):101223. https://doi.org/10.1016/j.xpro.2022.101223
- Ding B*. (2022). Novel insights into the pathogenesis of DYT1 dystonia from induced patient-derived neurons. Neural Regen Res 17(3):561-562.
- Ding B*, Tang Y, Ma S, Akter M, Liu ML, Zang T, Zhang CL. (2021). Disease modeling with human neurons reveals LMNB1 dysregulation underlying DYT1 dystonia. J Neurosci. 41 (9): 2024-2038. (Featured Article, https://www.jneurosci.org/content/41/9/1846 Selected as JNeurosci's Annual Spotlight 2021. JNeurosci's Annual Spotlight features articles that received the highest marks for both methodological merit and significance.)
- Ding B*. (2021). Generation of patient-specific motor neurons in modeling movement diseases. Neural Regen Res 16(9):1799-1800.
- Ding B* and Sepehrimanesh M. (2021). Nucleocytoplasmic transport: regulatory mechanisms and the implications in neurodegeneration. Int. J. Mol. Sci. 22 (8): 4165. https://doi.org/10.3390/ijms22084165
- Sepehrimanesh M., Akter M. and Ding B*. (2021). Direct conversion of adult fibroblasts into motor neurons. STAR Protoc. 2 (4) 17 December 2021, 100917 https://doi.org/10.1016/j.xpro.2021.100917
- Akter M, Cui H, Chen Y-H and Ding B*. (2021). Generation of two induced pluripotent stem cell lines with heterozygous and homozygous GAG deletion in TOR1A gene from a healthy hiPSC line. Stem Cell Research. 56 (2021)102536. https://doi.org/10.1016/j.scr.2021.102536
- Sepehrimanesh M, and Ding B* (2020). Generation and Optimization of Highly Pure Motor Neurons from Human Induced Pluripotent Stem Cells via Lentiviral Delivery of Transcription Factors. Am J Physiol Cell
- Physiol. 319: C771–C780. https://doi.org/10.1152/ajpcell.00279.2020
- Ding B,* Akter M, and Zhang C-L. (2020). Differential Influence of Sample Sex and Neuronal Maturation on mRNA and Protein Transport in Induced Human Neurons. Front Mol Neurosci. 2020 Apr 3; 13: 46. DOI: 10.3389/fnmol.2020.00046
Prior 2020 (selected)
- Selvam K, Ding B, Sharma R and Li S. (2019). Evidence that moderate eviction of Spt5 and promotion of error-free transcriptional bypass by Rad26 facilitates transcription coupled repair. J Mol Biol. 2019 Feb 18. doi: 10.1016.
- Ding B, Dobner PR, Mullikin-Kilpatrick D, Wang W, Zhu H, Chow CW, Gronostajski RM and Kilpatrick DL. (2018). BDNF Activates an NFI-Dependent Neurodevelopmental Timing Program By Sequestering NFATc4. Mol Biol Cell. 2018 Apr 15; 29(8):975-987.
- Ding B., Mirza A,M., Alshley J. Budnik V. and Munson M. (2017). Nuclear Export Through Nuclear Envelope Remodeling in Saccharomyces cerevisiae. bioRxiv 224055; doi: https://doi.org/10.1101/224055
- Leto K, Arancillo M, Becker EB, Buffo A, Chiang C, Ding B, Dobyns WB, Dusart I, Haldipur P, Hatten ME, Hoshino M, Joyner AL, Kano M, Kilpatrick DL, Koibuchi N, Marino S, Martinez S, Millen KJ, Millner TO, Miyata T, Parmigiani E, Schilling K, Sekerková G, Sillitoe RV, Sotelo C, Uesaka N, Wefers A, Wingate RJ, Hawkes R. (2016). Consensus Paper: Cerebellar Development. Cerebellum. Dec;15(6): 789-828.
- Li Y, Hassinger L, Thomson T, Ding B, Ashley J, Hassinger W and Budnik V. (2016). Lamin Mutations Accelerate Aging via Defective Export of Mitochondrial mRNAs through Nuclear Envelope Budding. Curr Biol. 2016 Aug 8;26(15):2052-9.
- Ding B, Cave HW, Dobner PR, Kilpatrick DM, Bartsokis M, Zhu H, Chow CW, Gronostajski RM and Kilpatrick DL. (2016) Reciprocal Auto-Regulation by NFI Occupancy and ETV1 Promotes the Developmental Expression of Dendrite-Synapse Genes in Cerebellar Granule Neurons. Mol Biol Cell. 2016 May 1;27(9):1488-99.
Complete List of my Published Work in MyBibliography: LEARN MORE
Lab Resources
The Baojin Ding Lab has deposited materials at Addgene for distribution to the research community.
Human Induced Pluripotent Stem Cell (hiPSC) Lines
- Generation of two induced pluripotent stem cell lines with heterozygous and homozygous GAG deletion in TOR1A gene from a healthy hiPSC line. Stem Cell Research. 56 (2021)102536. https://doi.org/10.1016/j.scr.2021.102536
- Generation of gene-corrected isogenic control cell lines from a DYT1 dystonia patient iPSC line carrying a heterozygous GAG mutation in TOR1A gene. Stem Cell Research. 62.July 2022, 102807. https://doi.org/10.1016/j.scr.2022.102807
- Generation of two induced pluripotent stem cell lines with heterozygous and homozygous amyotrophic lateral sclerosis mutation R521G (c.1561C>G) in FUS gene. Stem Cell Research. 2023 Mar 21; 69:103078. https://doi.org/10.1016/j.scr.2023.103078
- Generation of two induced pluripotent stem cell lines with heterozygous and homozygous amyotrophic lateral sclerosis mutation P525L (c.1574C>T) in FUS gene. Stem Cell Research. 2023 Apl 24; 69:103103. https://doi.org/10.1016/j.scr.2023.103103
Methods and Protocols
- Protocol to image and quantify nucleocytoplasmic transport in cultured cells using fluorescent in situ hybridization and a dual reporter system. STAR Protoc. 2022 Dec 16; 3(4):101813. https://doi.org/10.1016/j.xpro.2022.101813
- Direct conversion of adult fibroblasts into motor neurons. STAR Protoc. 2 (4) 17 December 2021, 100917 (Invited protocol, Cell Press). https://doi.org/10.1016/j.xpro.2021.100917
- Generation of highly pure motor neurons from human induced pluripotent stem cells. STAR Protoc. 2022 Mar 10; 3(1):101223. (Invited protocol. Cell Press) https://doi.org/10.1016/j.xpro.2022.101223
- Assembling a coculture system to prepare highly pure iPSC-derived neurons at late mature stages. eNeuro. 15 July 2024, ENEURO.0165-24.2024. https://doi.org/10.1523/ENEURO.0165-24.2024
- Validation of Pluripotency of Human Induced Pluripotent Stem Cells. Human Induced Pluripotent Stem Cells, Neuromethods, vol. 210, Chapter 5. https://doi.org/10.1007/978-1-0716-3999-3_5
- Lentiviral Delivery of Transcription Factors to Generate Motor Neurons from Human Induced Pluripotent Stem Cells. Human Induced Pluripotent Stem Cells, Neuromethods, vol. 210, Chapter 10. https://doi.org/10.1007/978-1-0716-3999-3_10
- Generation of Motor Neurons from Human Induced Pluripotent Stem Cells using Small Chemical Molecules. Human Induced Pluripotent Stem Cells, Neuromethods, vol. 210, Chapter 11. https://doi.org/10.1007/978-1-0716-3999-3_11
- Preparation of highly pure hiPSC-derived motor neurons through assembling a co-culture System. Human Induced Pluripotent Stem Cells, Neuromethods, vol. 210, Chapter 14. https://doi.org/10.1007/978-1-0716-3999-3_14
- Book: Human Induced Pluripotent Stem Cells. Neuromethods, Vol. 210. https://doi.org/10.1007/978-1-0716-3999-3 Editors: Baojin Ding and Yu Tang Publisher: Springer Nature, Humana New York, NY eBook ISBN: 978-1-0716-3999-3 Print ISBN: 978-1-0716-3998-6
Highlights:
• Includes cutting-edge methods and protocols
• Provides step-by-step detail essential for reproducible results
• Contains key notes and implementation advice from the experts
Human Induced Pluripotent Stem Cells | SpringerLink
Team
Check the POSITIONS tab for opportunities to join the Ding Lab.
Luke (Haochen) Cui, MS
PhD Student
luke.cui@lsuhs.edu
Md Abir Hosain, MS
PhD Student
MDAbir.Hosain@lsuhs.edu
Amdadul Huque, MS
PhD Student
Amdadul.Huque@lsuhs.edu
Yuntian Duan, MS
Research Associate
Yuntian.Duan@lsuhs.edu
Recent Lab Alumni
Masuma Akter, MS
Doctoral Student (8.2019-1.2024)
Scientist at Johnson & Johnson, Philadelphia, PA
Casey Coutee
Undergraduate Researcher (1.2019-5.2020)
Master student (8.2020-8.2022)
Manufacturing Chemist, Agilent Technologies, Boulder, CO
Masood Sepehrimanesh, DVM, PhD
Postdoctoral Fellow (2.2020-8.2024)
Assistant Professor at Louisiana Tech University
Positions
Post-doctoral Associates
We are currently recruiting Post-doctoral Associates. Please contact Dr. Baojin Ding at (baojin.ding@lsuhs.edu) for detailed information.
Graduate Students
Graduate students interested in conducting research in the Ding lab, please contact Dr. Baojin Ding at (baojin.ding@lsuhs.edu) for detailed information.
Undergraduate Students
A position for Undergraduate Student Research Assistant is available in the Ding Lab, please contact Dr. Baojin Ding at (baojin.ding@lsuhs.edu) for detailed information.
contact
Contact Us
LSU Health Shreveport
Department of Biochemistry and Molecular Biology
1501 Kings Hwy
Shreveport, LA 71103
Email:
baojin.ding@lsuhs.edu
Ding Lab
Cellular and Molecular Neuroscience and Neurological Diseases